Joint Rare Variant Association Test of the Average and Individual Effects for Sequencing Studies
نویسندگان
چکیده
For many complex traits, single nucleotide polymorphisms (SNPs) identified from genome-wide association studies (GWAS) only explain a small percentage of heritability. Next generation sequencing technology makes it possible to explore unexplained heritability by identifying rare variants (RVs). Existing tests designed for RVs look for optimal strategies to combine information across multiple variants. Many of the tests have good power when the true underlying associations are either in the same direction or in opposite directions. We propose three tests for examining the association between a phenotype and RVs, where two of them jointly consider the common association across RVs and the individual deviations from the common effect. On one hand, similar to some of the best existing methods, the individual deviations are modeled as random effects to borrow information across multiple RVs. On the other hand, unlike the existing methods which pool individual effects towards zero, we pool them towards a possibly non-zero common effect by adding a pooled variant into the model. The common effect and the individual effects are jointly tested. We show through extensive simulations that at least one of the three tests proposed here is the most powerful or very close to being the most powerful in various settings of true models. This is appealing in practice because the direction and size of the true effects of the associated RVs are unknown. Researchers can apply the developed tests to improve power under a wide range of true models.
منابع مشابه
General framework for meta-analysis of rare variants in sequencing association studies.
We propose a general statistical framework for meta-analysis of gene- or region-based multimarker rare variant association tests in sequencing association studies. In genome-wide association studies, single-marker meta-analysis has been widely used to increase statistical power by combining results via regression coefficients and standard errors from different studies. In analysis of rare varia...
متن کاملSyndromic Intellectual Disability Caused by a Novel Truncating Variant in AHDC1: A Case Report
Mutations in the AHDC1 gene are associated with the Xia-Gibbs syndrome (XGS), a sporadic genetic disorder characterised by developmental delay, intellectual disability, hypotonia, obstructive sleep apnoea, dysmorphic facial features, and cerebral malformations with plagiocephaly. Here we report the case of a 13-year-old Colombian female patient with a history of developmental delay, speech dela...
متن کاملAssessing the effects of multiple markers in genetic association studies
It is believed that human diseases and their underlying causal pathways involve a complex interplay between multiple genetic and environmental risk factors. The search for relevant genetic variants, which typically have very small individual effects, is challenging. While typically genetic association studies involve testing for association between the phenotype and each individual genetic vari...
متن کاملSingle Nucleotide Polymorphisms and Association Studies: A Few Critical Points
Uncovering DNA sequence variations that correlate with phenotypic changes, e.g., diseases, is the aim of sequence variation studies. Common types sequence variations are Single nucleotide polymorphism (SNP, pronounced snip).SNPs are the third-generation molecular marker. SNP represents a DNA sequence variant of a single base pair with the minor allele occurring in more than 1% of a given popula...
متن کاملOptimal tests for rare variant effects in sequencing association studies.
With development of massively parallel sequencing technologies, there is a substantial need for developing powerful rare variant association tests. Common approaches include burden and non-burden tests. Burden tests assume all rare variants in the target region have effects on the phenotype in the same direction and of similar magnitude. The recently proposed sequence kernel association test (S...
متن کامل